If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h(2)=(2)^2+3(2)-1
We move all terms to the left:
h(2)-((2)^2+3(2)-1)=0
We add all the numbers together, and all the variables
h^2-35=0
a = 1; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·1·(-35)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{35}}{2*1}=\frac{0-2\sqrt{35}}{2} =-\frac{2\sqrt{35}}{2} =-\sqrt{35} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{35}}{2*1}=\frac{0+2\sqrt{35}}{2} =\frac{2\sqrt{35}}{2} =\sqrt{35} $
| -178=f+-671 | | 5u=1=21 | | 5+3x=5x-19;x= | | x+27+2x+x+29=180 | | $39.99+$0.45x=$44.99+$0.40x | | t+35+t+39+60=180 | | -5x-3=-3(x-5) | | 57=b-2 | | 4x-9=7x+12;x= | | -7/n=-294 | | 4v+79+69=180 | | 2a+3a=17 | | 2j=j−8 | | 2b+3b+40=180 | | s+55=76 | | 4z–10=–7z+78 | | x-7=63-12(x-8) | | 10w+3w+37=180 | | 2x-8=x+17;x= | | -2x-23=11 | | 37=q+-31 | | 7x+11=16x+9 | | 102+32+2s=180 | | 3y-8=222 | | 16+3.75x=25+2.25 | | 5x/3=25/15 | | z+79+40=180 | | 4x-8=9-6x;x= | | -16u=-704 | | -2x-23=1 | | w+51+96=180 | | 3x+-7=67 |